首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9340篇
  免费   1012篇
  国内免费   876篇
化学   8072篇
晶体学   43篇
力学   894篇
综合类   151篇
数学   471篇
物理学   1597篇
  2024年   14篇
  2023年   114篇
  2022年   219篇
  2021年   322篇
  2020年   435篇
  2019年   344篇
  2018年   353篇
  2017年   352篇
  2016年   499篇
  2015年   436篇
  2014年   479篇
  2013年   1053篇
  2012年   587篇
  2011年   529篇
  2010年   390篇
  2009年   444篇
  2008年   423篇
  2007年   534篇
  2006年   449篇
  2005年   425篇
  2004年   379篇
  2003年   324篇
  2002年   307篇
  2001年   218篇
  2000年   222篇
  1999年   161篇
  1998年   155篇
  1997年   144篇
  1996年   111篇
  1995年   124篇
  1994年   76篇
  1993年   107篇
  1992年   92篇
  1991年   63篇
  1990年   51篇
  1989年   34篇
  1988年   35篇
  1987年   33篇
  1986年   28篇
  1985年   27篇
  1984年   24篇
  1983年   8篇
  1982年   13篇
  1981年   13篇
  1980年   15篇
  1979年   14篇
  1978年   10篇
  1976年   9篇
  1973年   10篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
用分子动力学方法模拟了油、水和阴离子表面活性剂组成的混合溶液从初始“均相”到“油水两相”分离的动力学过程, 研究了十二烷基苯磺酸钠(SDBS)在界面分离过程中的作用. 模拟发现, 油水两相能够在短时间内分离达到平衡, 形成一个明显的油水界面; 在SDBS存在情况下, 油水界面的分离时间随着SDBS浓度的增加逐渐增加, 达到平衡时SDBS会在界面处形成一个明显的界面膜, 并对油水界面处的水分子有限制作用. 模拟表明, 分子动力学方法可以作为实验的一种补充, 为实验提供必要的微观分子结构信息.  相似文献   
992.
Analysis and modeling of spatial data are of considerable interest in many applications. However, the prediction of geographical features from a set of chemical measurements on a set of geographically distinct samples has never been explored. We report a new, tree‐structured hierarchical model for the estimation of geographical location of spatially distributed samples from their chemical measurements. The tree‐structured hierarchical modeling used in this study involves a set of geographic regions stored in a hierarchical tree structure, with each nonterminal node representing a classifier and each terminal node representing a regression model. Once the tree‐structured model is constructed, given a sample with only chemical measurements available, the predicted regional location of the sample is gradually restricted as it is passed through a series of classification steps. The geographic location of the sample can be predicted using a regression model within the terminal subregion. We show that the tree‐structured modeling approach provides reasonable estimates of geographical region and geographic location for surface water samples taken across the entire USA. Further, the location uncertainty, an estimate of a probability that a test sample could be located within a pre‐estimated, joint prediction interval that is much smaller than the terminal subregion, can also be assessed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
993.
The conductivity behavior of Al(OH)3-acrylamide hybrid polyacrylamide (hybrid PAAm) in distilled water was studied. A discontinuity phenomenon of the conductivity (k) versus concentration (c) curve of the hybrid PAAm in a certain concentration regime is found. This phenomenon is dependent on the molecular weight of the hybrid PAAm and on the particle size and content of the Al(OH)3 colloid in the hybrid PAAm. This phenomenon was accounted for assuming ionization of the hybrid PAAm.  相似文献   
994.
Understanding the molecular determinants of the relative propensities of proteins to aggregate in a cellular environment is a central issue for treating protein‐aggregation diseases and developing peptide‐based therapeutics. Despite the expectation that protein aggregation can largely be attributed to direct protein–protein interactions, a crucial role the surrounding water in determining the aggregation propensity of proteins both in vitro and in vivo was identified. The overall protein hydrophobicity, defined solely by the hydration free energy of a protein in its monomeric state sampling its equilibrium structures, was shown to be the predominant determinant of protein aggregation propensity in aqueous solution. Striking discrimination of positively and negatively charged residues by the surrounding water was also found. This effect depends on the protein net charge and plays a crucial role in regulating the solubility of the protein. These results pave the way for the design of aggregation‐resistant proteins as biotherapeutics.  相似文献   
995.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   
996.
Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt‐embedded nitrogen‐rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen‐evolving catalysts—which also play crucial roles in the overall water‐splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co2+‐embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2). The materials’ efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects.  相似文献   
997.
Copolymers containing water‐soluble poly(ethylene glycol) (PEG) side chains and precisely controlled functional microstructures were synthesized by sequence‐controlled copolymerization of donor and acceptor comonomers, that is, styrene derivatives and N‐substituted maleimides. Two routes were compared for the preparation of these structures: a) the direct use of a PEG–styrene macromonomer as a donor comonomer, and b) the use of an alkyne‐functionalized styrenic comonomer, which was PEGylated by copper‐catalyzed alkyne–azide cycloaddition after polymerization. The latter method was found to be the most versatile and enabled the synthesis of high‐precision copolymers. For example, PEGylated copolymers containing precisely positioned fluorescent (e.g. pyrene), switchable (e.g. azobenzene), and reactive functionalities (e.g. an activated ester) were prepared.  相似文献   
998.
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi‐faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti support (2 mg cm?2 mass loading) produced a cathodic current density of 20 mA cm?2 at an overpotential of ?85 mV. The CoP/Ti electrodes were stable over 24 h of sustained hydrogen production in 0.50 M H2SO4. The activity was essentially unchanged after 400 cyclic voltammetric sweeps, suggesting long‐term viability under operating conditions. CoP is therefore amongst the most active, acid‐stable, earth‐abundant HER electrocatalysts reported to date.  相似文献   
999.
Water surrounded by hydrophobic interfaces affects a variety of chemical reactions and biological activities. Carbon nanotubes (CNTs) can be used to investigate the behavior of water at hydrophobic interfaces. Here, we determined the fundamental unit of water by evaluating the ice‐like cluster formation of water in the limited hydrophobic nanospaces of CNTs, using X‐ray diffraction and molecular simulation analysis. The water in CNTs with a diameter of 1 nm had fewer hydrogen bonds than bulk water under ambient conditions. In CNTs with diameters of 2 and 3 nm, water formed nanoclusters even under ambient conditions, because of prolific hydrogen bonding; predominant ice‐like cluster formation was induced in the 2–3 nm nanospaces. The results confirming the cluster formation in the CNTs also demonstrated that the critical cluster size was 0.8–3.4 nm. The fundamental cluster size was 0.8 nm; these results indicated that 0.8 nm clusters are the fundamental units of water assemblies.  相似文献   
1000.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号